中学语文网 加入收藏  -  设为首页
您的位置:中学语文网 > 初二语文 > 正文
2011江苏高考数学卷14题怎么做
2011江苏高考数学卷14题怎么做
提示:

2011江苏高考数学卷14题怎么做

答案为[1/2,2+√2] 解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥1/2。 当m≤0时,有[(2-2m)/√2]>-m且[(2-2m-1)/√2]>_m; 则有[√2_√2m]>_m,√2/2_√2m>_m, 又由m≤0,则2>2m+1,可得A∩B=∅, 当m≥1/2时,有|2-2m/√2|≤m或|2-2m-1/√2|≤m, 解可得:2-√2≤m≤2+√2,1-√2/2≤m≤1+√2/2, 又由m≥12,则m的范围是[1/2,2+√2]; 综合可得m的范围是[1/2,2+√2]; 故答案为[1/2,2+√2]

2011高考数学江苏试卷
提示:

2011高考数学江苏试卷

2011江苏高考数学试卷 1、已知集合 则 2、函数 的单调增区间是__________ 3、设复数i满足 (i是虚数单位),则 的实部是_________ 4、根据如图所示的伪代码,当输入 分别为2,3时,最后输出的m的值是________ Read a,b If a>b Then m a Else m b End If Print m 5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差 7、已知 则 的值为__________ 8、在平面直角坐标系 中,过坐标原点的一条直线与函数 的图象交于P、Q两点,则线段PQ长的最小值是________ 9、函数 是常数, 的部分图象如图所示,则 10、已知 是夹角为 的两个单位向量, 若 ,则k的值为 11、已知实数 ,函数 ,若 ,则a的值为________ 12、在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交y轴于点M,过点P作 的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________ 13、设 ,其中 成公比为q的等比数列, 成公差为1的等差数列,则q的最小值是________ 14、设集合 , , 若 则实数m的取值范围是______________ 二、解答题: 15、在△ABC中,角A、B、C所对应的边为 (1)若 求A的值; (2)若 ,求 的值. 16、如图,在四棱锥 中,平面PAD⊥平面ABCD, AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD; (2)平面BEF⊥平面PAD 17、请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm (1)若广告商要求包装盒侧面积S(cm )最大,试问x应取何值? (2)若广告商要求包装盒容积V(cm )最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。 P 18、如图,在平面直角坐标系 中,M、N分别是椭圆 的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN,求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA⊥PB 19、已知a,b是实数,函数 和 是 的导函数,若 在区间I上恒成立,则称 和 在区间I上单调性一致 (1)设 ,若函数 和 在区间 上单调性一致,求实数b的取值范围; (2)设 且 ,若函数 和 在以a,b为端点的开区间上单调性一致,求|a-b|的最大值 20、设M为部分正整数组成的集合,数列 的首项 ,前n项和为 ,已知对任意整数k属于M,当n>k时, 都成立 (1)设M={1}, ,求 的值;(2)设M={3,4},求数列 的通项公式

2012高考理科数学(全国卷)
提示:

2012高考理科数学(全国卷)

2012年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为
A.3 B.6 C.8 D.10
2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有
A.12种 B.10种 C.9种 D.8种
(3)下面是关于复数z= 的四个命题
P1: =2 p2: =2i
P3:z的共轭复数为1+I P4 :z的虚部为-1
其中真命题为
A P2 ,P3 B P1 ,P2 C P2,P4 D P3 P4


(4)设F1,F2是椭圆E: + =1 (a>b>0)的左、右焦点 ,P为直线x= 上的一点,
△F2PF1是底角为30°的等腰三角形,则E的离心率为
A B C D

(5)已知{an}为等比数列, a4+a1=2 a5a6=-8 则a1+a10 =
A.7 B.5 C-5 D.-7
(6)如果执行右边的程序图,输入正整数N(N≥2)和实数a1.a2,…an,输入A,B,则

(A)A+B为a1a2,…,an的和
(B) 为a1a2.…,an的算式平均数
(C)A和B分别是a1a2,…an中最大的数和最小的数
(D)A和B分别是a1a2,…an中最小的数和最大的数
(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为

(A)6 (B)9 (C)12 (D)18
(8)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y²=16x的准线交于A,B两点, ,则C的实轴长为
(A) (B) (C)4(D)8
(9)已知w>0,函数 在 单调递减,则w的取值范围是
(A) (B) (C) (D)(0,2]
(10)已知函数 ,则y=f(x)的图像大致为

(11)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为
(A) (B) (C) (D)
(12)设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为
(A)1-ln2(B) (C)1+ln2(D)
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考试依据要求作答。
二。填空题:本大题共4小题,每小题5分。
(13)已知向量a,b夹角为45°,且|a|=1,|2a-b|= ,则|b|=____________.
(14)设x,y满足约束条件 则z=x-2y的取值范围为__________.
(15),某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_________________.

(16)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a,b,c分别为△ABC的三个内角A,B,C的对边, 。
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面积为 ,求b,c。
(18)(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花作垃圾处理。
(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率。
(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。
(19)(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,AC=BC= AA1,D是棱AA1的中点,DC1⊥BD。

(1) 证明:DC1⊥BC;
(2) 求二面角A1-BD-C1的大小。
(20)(本小题满分12分)
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。
(1) 若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2) 若A,B,F三点在同一直线m上,直线n与m平行,且n与C之有一个公共点,求坐标原点到m,n距离的比值。
(21)(本小题满分12分)
已知函数f(x)满足f(x)=f′(1)ex-1-f(0)x+ x2.
(1) 求f(x)的解析式及单调区间;
(2) 若f(x)≥ x2+ax+b,求(a+1)b的最大值。
请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第一题计分。作答时请写清题号。
(22)(本小题满分10分)选修4—1;几何证明选讲
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:

(Ⅰ)CD=BC;
(Ⅱ)△BCD △GBD。
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C1的参数方程式 ( 为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程式 =2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为 。
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为C1上任意一点,求 的取值范围。
(24)(本小题满分10分)选修4—5;不等式选讲
已知函数
(Ⅰ)当a=-3时,求不等式(x) 3的解集;
(2)若f(x)≤ 的解集包含[1,2],求a的取值范围。